
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

V2X Congestion Control for Multi-Channel

Operation: a Scalable Validation in Virtualized

Environments

Miguel Sepulcre1, Yeray Guadalcazar1, Miguel A. Fornell2, Gokulnath Thandavarayan1,3,

Francisco Paredes Vera2, Javier Gozalvez1, Amir Mohammadisarab1
1Uwicore lab., Universidad Miguel Hernández de Elche (UMH), Spain.

Email: {msepulcre, yeray.guadalcazar, gthandavarayan, j.gozalvez, amohammadisarab}@umh.es
2Idneo Technologies, SAU, Barcelona, Spain. E-mail: {miguel.fornell, francisco.paredes}@idneo.com

3Shiv Nadar University, Chennai 603110, India. E-mail: gokulnatht@snuchennai.edu.in

Abstract—Connected and automated driving introduces a

myriad of new V2X services, such as cooperative perception and

maneuver coordination, that significantly increase the channel

load and require multi-channel V2X operation. Policies for

Multi-Channel Operation (MCO) and congestion control are

therefore essential for simultaneously supporting multiple V2X

services across several channels. In this context, this paper

presents the design, implementation, and extensive validation of

a Facilities layer V2X congestion control solution for multi-

channel operation integrated into an ETSI-compliant

Cooperative Intelligent Transportation Systems (C-ITS)

protocol stack. Our approach dynamically adapts transmission

parameters based on real-time channel conditions and the

priorities and requirements of the V2X services operating in a

C-ITS station. By employing a Traffic-Class based proportional

fairness strategy, the solution allocates available communication

resources among multiple V2X services, effectively responding

to varying channel loads in real time. Scalable experimental

results in a virtualized environment demonstrate that our

solution meets ETSI Release 2 requirements while bridging the

gap between simulation-based evaluations and real-world

testing, accounting for hardware limitations and processing

delays. This work lays a robust foundation for scalable and

congestion-aware C-ITS testing and validation prior to real

world deployments. This paper makes our code publicly

available so that other researchers can replicate our study and

further explore MCO solutions for V2X communications.

Keywords- Congestion Control, Multi-channel operation,

MCO, Facilities Layer, Vanetza, C-ITS stack, connected and

automated vehicles, DCC, ETSI, CAV, V2X, vehicular networks,

cooperative ITS, virtual environment.

I. INTRODUCTION

Vehicle-to-Everything (V2X) communications play a
crucial role in enhancing road safety, traffic efficiency, and
automated driving by enabling real-time information
exchange among vehicles, infrastructure, and other road users.
The ETSI Technical Committee on Intelligent Transport
Systems (ITS) is responsible for developing standards for
V2X communications, ensuring interoperability and
addressing emerging vehicular communication needs. The
initial set of standards, known as Release 1, was designed to
support fundamental “Day-1” applications, which primarily
relied on the exchange of Cooperative Awareness Messages
(CAMs) [1] and Decentralized Environmental Notification
Messages (DENMs) [2]. CAMs are continuously broadcast by
vehicles and roadside units to provide real-time information

about their status (e.g. position and speed in the case of
vehicles). DENMs are event-driven messages intended to
warn road users of safety-critical incidents. A single 10-MHz
radio channel was deemed sufficient for “Day-1” applications,
and Release 1 standards did not include mechanisms for multi-
channel operation. To avoid overloading the channel, a
framework for congestion control (DCC, Decentralized
Congestion Control) was specified for ITS-G5. For C-V2X,
the congestion control approach defined by 3GPP at the MAC
was adopted in ETSI specifications.

The evolution of vehicular applications beyond "Day-1"
functionalities has required a more advanced communication
framework. ETSI Release 2 introduces a broader set of use
cases, enabling vehicles to share collective perception
messages [3] and maneuver coordination messages [4],
allowing road-infrastructure nodes to perform automated
vehicle marshaling for parking or factories [5][6], and
enabling vulnerable road users (VRUs), such as cyclists and
scooter riders, broadcast their presence [7]. These new V2X
services significantly increase the volume and complexity of
exchanged messages, requiring more than one 10-MHz radio
channel [8]. To address this growing demand, ETSI Release 2
has defined a framework for multi-channel operation (MCO)
through a set of specifications dedicated to managing the radio
channels [9]. ETSI defines in [10] the communication
architecture for MCO, specifying how different MCO entities
within a C-ITS station gather information and dynamically
make decisions about channel usage to ensure efficient and
coordinated spectrum utilization. A key element of the MCO
architecture is the new facilities-layer entity (a.k.a.
MCO_FAC) [11], which is responsible for controlling and
distributing the load among the available channels.
MCO_FAC collects information about active V2X services
and their communication requirements, monitors available
radio access technologies, and dynamically allocates
resources to active V2X services to optimize spectrum
utilization.

The first studies on the ETSI MCO concept have been
based on simulations, focusing on evaluating different
mechanisms for distributing the load across the available
channels [12][13]. In this paper, we present for the first time a
real-world implementation of MCO_FAC on an ETSI-
compliant C-ITS protocol stack, Vanetza, and its real-time
evaluation under large-scale scenarios using virtualized
environments. Our goal is to demonstrate the feasibility and
potential of MCO_FAC when integrated into a C-ITS stack
with multiple V2X services. Unlike simulation studies, the
evaluation of our implementation accounts for potential
hardware limitations and processing delays. Our work thus
demonstrates a clear transition from simulation-based
evaluations to real-world deployment, and provides valuable

This work is partially funded by Centro para el Desarrollo Tecnológico

y la Innovación (CDTI) through the InPercept project Ref. PTAS-20211011.

InPercept project is also supported by Spanish Ministerio de Ciencia e

Innovación and receives funds from NextGenerationUE program. This work

has also been partly funded by MCIN/AEI/10.13039/ 501100011033 and the

“European Union NextGenerationEU/PRTR” (TED2021-130436B-I00).

insights into the dynamic resource allocation necessary to
support the increasing complexity and communication
requirements of V2X services. This real-time evaluation not
only validates the theoretical benefits of MCO but also paves
the way for more robust and scalable vehicular
communication systems, ultimately contributing to safer and
more efficient transportation networks.

With this paper we make our code open source [14],
including extensions to Vanetza that implement MCO_FAC
and integrate it seamlessly into the existing C-ITS protocol
stack. In addition, we provide a complete multi-V2X service
testing environment with all the necessary scripts and code to
virtualize and run multiple concurrent instances of the C-ITS
protocol stack. The provided source code allows other
researchers to easily replicate our study and further explore
MCO solutions for V2X communications.

II. MCO AT FACILITIES LAYER

The MCO architecture [10] supports multiple applications
and services, as well as multiple radio interfaces and channels.
The MCO architecture comprises three core components [9]:
MCO_FAC (Facilities layer), MCO_NET (Network layer),
and MCO_ACC (Access layer). MCO_FAC serves as the core
decision-making component, where all the intelligence of the
MCO operations reside, ensuring that channel selection
strategies are dynamically adapted to meet the requirements
of the different V2X services within C-ITS station. Its central
role emerges from the need to consider both application
requirements and access layer conditions, thereby facilitating
efficient and coordinated use of multiple communication
channels. ETSI defines in [11] the specific functionalities
required to support MCO at the Facilities layer, ensuring
seamless integration with V2X services as well as lower-layer
networking and access technologies. For this purpose, the
MCO_FAC contains the following three key entities:

Bandwidth Management Entity (BME). This entity
computes and distributes the available communication
resources among the V2X services of the C-ITS station. For
this purpose, it monitors the load on each channel (via the
corresponding radio interface) and computes the
communication resources that the C-ITS can use. It then
allocates the computed resources among the V2X services
while taking into account their requirements. The resources
can be internally computed as a proportion of the bandwidth
or channel, but must be translated to a metric that is
understandable by the V2X services, such as bits per second,
so that they adapt their message rate and size as needed. The
V2X services have the flexibility to adjust their message rate
while keeping the message size constant (e.g., modifying the
CAM generation without changing its size). They could also
choose to modify the message size while maintaining the
message rate (e.g., varying the number of detected objects
included in each CPM), or they could opt to adjust both
parameters (e.g., reducing the message size by omitting
optional elements while also altering the message rate).

Message Handling Entity (MHE). This entity manages
the transmission of messages to the Networking & Transport
layer, ensuring that each message is assigned appropriate
parameters (e.g., priority, transmission channel) based on the
available communication resources. The MHE also collects
statistics on the messages generated by the various V2X
services to ensure that they comply with the limits indicated
by the BME in terms of resources. These limits can be

enforced individually for each service, or by aggregating the
messages from all services.

Message Collecting Entity (MCE). This entity handles
the reception of messages from lower layers and directs them
to the appropriate V2X service. It can also collect statistics to
enable advanced functionalities.

Although the MCO framework specifies the functional
structure of MCO_FAC, the implementation of specific
algorithms is left to manufacturers. This is particularly true,
and relevant, for the algorithms used to compute the
communication resources available to the C-ITS station in a
channel based on its channel load, and to distribute those
resources among the multiple active V2X services.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. C-ITS protocol stack

For the prototyping of MCO_FAC, we have leveraged
Vanetza [18], an open-source C-ITS protocol stack designed
for vehicular networking research and development. Vanetza
provides an implementation of the ETSI C-ITS protocol stack,
enabling direct vehicle-to-vehicle and vehicle-to-
infrastructure communication. It includes key functionalities
such as GeoNetworking, the Basic Transport Protocol (BTP),
and support for CAMs and DENMs in ASN1. Vanetza has
been shown to successfully run on devices from Cohda
Wireless (MK5), Autotalks (Craton and Secton), and nfiniity
(CUBE EVK). We have also demonstrated in a previous study
that Vanetza can run on an automotive grade Telematic
Control Unit from Idneo (VMax) which is equipped with a C-
V2X Mode 4 radio interface [19].

The MCO_FAC module implemented has been integrated
into the Vanetza C-ITS protocol stack with minimal
modifications. This development is based on Socktapp, a tool
provided within Vanetza, which we have extended to support
MCO functionalities at the Facilities layer. The implemented
MCO_FAC is instantiated conditionally (via the use-mco flag)
and can therefore be activated or deactivated at startup by the
user. The modifications performed in main.cpp, BTP, and the
corresponding facilities-layer services are minimal, ensuring
that the MCO_FAC implementation does not disrupt existing
functionalities and can be easily integrated into new V2X
services.

The integration of the MCO_FAC module in the C-ITS
architecture is illustrated in Fig. 1. As shown in the figure, the
MCO_FAC module acts as an interface between different
V2X services and the transport layer (i.e., BTP). The dashed
line represents the control interface that handles the signal
exchange for the proper interaction of the MCO_FAC with the
V2X services, while the solid lines represent the data
interfaces responsible for the exchange of data messages
between different layers.

Fig. 1. Integration of MCO_FAC in the C-ITS protocol stack.

B. Facilities layer MCO

Fig. 2 illustrates the internal architecture and message flow
of the implemented MCO_FAC module. The core component,
which is part of the BME, performs resource management and
is triggered periodically by a timer set to TRM = 200ms. This
component first computes the resources available to the C-ITS
station based on the channel load, and then distributes these
computed resources among the V2X services. To achieve this,
we have implemented the Adaptive approach of DCC
(Decentralized Congestion Control) [16] at the Facilities
layer. This approach calculates the amount of resources that
the C-ITS station can use, referred to as delta (δ), a unitless
value representing the maximum percentage of time (or
bandwidth) the station is allowed to transmit on the channel. δ
is updated in each iteration using a control equation that
depends on the target and the measured channel load:

𝛿 = (1 − 𝛼) · 𝛿 + 𝛿𝑜𝑓𝑓𝑠𝑒𝑡 (1)
where

𝛿𝑜𝑓𝑓𝑠𝑒𝑡 = {
min(β · (𝐶𝐵𝑅𝑡𝑎𝑟 − 𝐶𝐵𝑅), 𝐺𝑚𝑎𝑥

+) 𝑖𝑓 𝐶𝐵𝑅𝑡𝑎𝑟 > 𝐶𝐵𝑅

max (β · (𝐶𝐵𝑅𝑡𝑎𝑟 − 𝐶𝐵𝑅), 𝐺𝑚𝑎𝑥
−) 𝑖𝑓 𝐶𝐵𝑅𝑡𝑎𝑟 ≤ 𝐶𝐵𝑅

 (2)

α, β, 𝐺𝑚𝑎𝑥
+ and 𝐺𝑚𝑎𝑥

− are constant control parameters [16]. The

channel load is measured every TRM using the CBR (Channel
Busy Ratio) metric, which represents the proportion of time
the channel is sensed as busy. The target channel load, CBRtar,
was configured to 0.68, following [16].

Once δ is computed, the resource management component
adopts a Traffic-Class based proportional fairness approach to
distribute the resources among the V2X services of the C-ITS
station. This approach is inspired from [17] but the design of
alternative approaches is an open research challenge, and
actually the objective of the Special Task Force STF688 on
Resource management that has been recently established
within ETSI. Following this approach, the highest-priority
services (i.e., those in the lowest Traffic Class) receive
resources in proportion to their requirements. If any resources
remain, they are then allocated to the second-highest Traffic
Class, with any subsequent surplus distributed to the third and
fourth Traffic Classes until all resources are assigned. To
prevent any V2X service from being starved, we have
implemented a policy ensuring that each service is allocated
at least the resources required to transmit one packet every 2
seconds. To estimate the resources required by each V2X
service, the MHE of MCO_FAC collects statistics on all
generated messages. The data collected is then used to
compute the average message size and transmission interval
for each service over the last second, thereby determining the
average required resources for each V2X service. Some of the
key parameters of our implemented MCO_FAC are
summarized in Table 1.

Fig. 2. Internal architecture and flow of the implemented MCO_FAC.

Table 1. MCO_FAC parameters

Parameter Value

Target channel load (CBRtar) 0.68

Traffic Classes 0–3

Maximum transmission interval 2 s

Resource management interval (TRM) 200 ms

Averaging time window 1 second

IV. VIRTUALIZED TESTING ENVIRONMENT

The congestion control module at facilities layer
(MCO_FAC) has been tested and validated in a virtualized
testing environment. The module is implemented in a
complete and fully standard-compliant C-ITS protocol stack.
To run concurrent instances of the C-ITS stack on a single
computer, a Docker container image was created that includes
everything needed to run the stack. Each stack instance was
deployed as a separate container at runtime with the Docker
Engine. All containers were connected via the Docker
network, a virtual network that allows containers to
communicate with each other and with the outside world.

The MCO_FAC module was evaluated under low,
medium, and high channel load scenarios by concurrently
running five, ten, and fifteen virtualized C-ITS stacks,
respectively. We have tested the implementation with up to
fifteen stacks concurrently running on the same hardware due
to the computational workload generated by the concurrent
stacks and the processing power of our computing platform1.
Our implementation can concurrently run more C-ITS stacks
with more powerful computing platforms.

Each stack represents a C-ITS station (i.e. vehicle) and has
five active V2X services that periodically generate V2X
messages with constant size (105 bytes including headers). As
shown in Table 2, each service is configured with a default
minimum interval of 100 ms (i.e. a maximum message rate of
10 Hz). The considered V2X services will maintain their
message size and reduce their message generation rate
following the instructions of MCO_FAC to control
congestion. The excess rate would be offloaded to an
alternative channel. To validate the effect of message
priorities, different Traffic Classes were configured for each
V2X service (see Table 2).

Table 2. V2X message priorities

V2X service ID Traffic Class

1 0

2 1

3 2

4 2

5 3

Since the communication among the virtualized C-ITS
stacks happens through a virtualized network, the CBR
measurements had to be estimated at the higher layers. For this
purpose, the MCO_FAC collects information about all
received V2X messages through the MCE. The CBR is
estimated by summing the sizes of all the received V2X

1 The implemented MCO_FAC has been tested on Ubuntu 22.04.3 LTS

(64-bit) running on an Asus TUF Gaming FX505DT laptop, equipped with

an AMD Ryzen 7 3750H processor operating at 2.3 GHz, 16 GB of RAM,

and an NVIDIA GeForce GTX 1650 GPU with 4 GB.

messages every TRM and dividing the result by TRM and a
predefined data rate of 6 Mbps. A scaling factor, sf, was used
to emulate high channel loads without the need to run more
than one hundred stacks in parallel to congest the channel. The
environment considered limited the maximum number of
simultaneous stacks that run in real time to fifteen. The scaling
factor was configured as sf=9 to generate channel loads of
approximately 31%, 63%, and 94% for the corresponding low,
medium, and high channel load scenarios.

The duration of each test was configured to be 300 seconds
(i.e. 5 minutes), with the first 50 seconds considered as an
initial transition period and not considered for evaluation. This
initial period is required for the simultaneous activation of all
the stacks at startup in the same hardware, which will not
happen in a real implementation. The length of this period
depends on both the algorithm and the time required to
initialize all the Docker containers on the same hardware.

V. RESULTS

To evaluate the implemented MCO_FAC module, we first
analyze its convergence. To this end, Fig. 3 plots the time
evolution of delta (δ), which is the percentage of radio
resources that can be used by the C-ITS station. The value of
δ , computed from the measured CBR, is used by MCO_FAC
to distribute the resources among the V2X services. Since the
message size is constant, δ is employed to adapt the message
generation interval of the V2X services. The results clearly
indicate that the system becomes stable after the initial
transition period. As expected, δ is inversely proportional to
the channel load, decreasing as the channel load increases. In
the low channel load scenario, we observed that δ converges
to approximately 2.74%. For the medium channel load
scenario, δ stabilizes at around 0.66%, and for the high
channel load scenario, δ converges to around 0.45%.

The convergence and stability of δ is associated to the
convergence and stability of the CBR, which is illustrated in
Fig. 4. As observed, MCO_FAC does not apply any
congestion control measures in the low channel load scenario
because the load remains significantly below the target level.
In the medium channel load scenario, MCO_FAC begins to
implement slight congestion control measures as the load
approaches the target. Finally, in the high channel load
scenario, MCO_FAC effectively controls the channel load and
reduces the CBR from 94% (if all services were generating
messages at 10 Hz) to approximately 62%.

It is important to highlight that the stability and
convergence of δ and the CBR were achieved while running
the solution concurrently in Docker containers in real time.
Hardware limitations introduced processing delays that affect
the actual transmission intervals. This occurs because a timer
is dynamically configured at runtime based on the message
interval computed by MCO_FAC for each V2X service.
When the timer expires, a new message is generated and
transmitted, the processing delays prevent the actual
transmission intervals from exactly matching those configured
by MCO_FAC. Fig. 5 illustrates the time evolution of the
configured and actual transmission intervals for one V2X
service in the low channel load scenario. Fig. 5a shows that
the configured interval is 100 ms, given the low CBR, while
Fig. 5b shows that the actual transmission interval slightly
fluctuates around 100 ms. These deviations are mainly due to
real-time processing delays (e.g., computing overhead,
hardware limitations, etc.) and do not impact the overall

stability and convergence of the implemented MCO_FAC,
thereby demonstrating its robustness. Moreover, these
deviations capture realistic processing and timing
characteristics often omitted in V2X simulations,
underscoring the importance of this study for analyzing real-
world implementations where precise timing and
responsiveness are critical.

Fig. 3. Time evolution of delta (δ) for different channel load scenarios.

Fig. 4. Time evolution of CBR (Channel Busy Ratio) for different channel

load scenarios.

(a) Configured transmission interval (b) Actual transmission interval

Fig. 5. Configured and actual message transmission interval of one V2X

service in the low channel load scenario.

Fig. 6 shows the actual transmission intervals of all the
V2X services as a function of time for the different channel
load scenarios. Fig. 6a shows that the configured interval
remains constant and is close to the default value of 100 ms in
the low channel load scenario, primarily due to the low CBR
(see Fig. 4). In contrast, for the medium and high channel load
scenarios, the MCO_FAC limits the message rate of the V2X
service with the lowest priority to control the channel load.
Fig. 6b shows that the transmission interval of V2X service 5
increases to approximately 145 ms because there is
insufficient bandwidth to accommodate all its transmissions.
Conversely, in the high channel load scenario, MCO_FAC
allocates all available resources to V2X services 1 to 4, as

shown in Fig. 6c. To prevent starvation of V2X service 5,
MCO_FAC still permits the transmission of one message
every 2 seconds, following the implemented starvation policy.

(a) Low channel load scenario

(b) Medium channel load scenario

(c) High channel load scenario

Fig. 6. Actual transmission interval of V2X messages for different channel

load scenarios.

VI. CONCLUSIONS

This paper has demonstrated the first successful design,
integration, and scalable validation of a Facilities layer
congestion control solution for multi-channel operation within
an standards-compliant C-ITS protocol stack that is provided
open-source to the community in [14]. The validation has been
conducted in a virtualized experimental environment that
allows testing the operation of congestion control protocols in
scalable testing environments and real-world C-ITS stacks
prior to on-field deployments. Our experimental evaluation
confirms that the proposed solution dynamically adapts
transmission parameters in response to real-time channel
conditions and service priorities and requirements, effectively
managing channel load even under hardware limitations and
processing delays. The solution provides a practical
framework that advances simulation-based evaluations
toward real-world deployment. These findings establish a

robust foundation for testing and validating scalable,
congestion-aware C-ITS implementations. Future work will
focus on designing and evaluating different algorithms for the
resource management and message handling of MCO_FAC,
integrating additional multi-channel operation components
such as MCO_NET and MCO_ACC, and supporting ETSI
V2X services such as the Collective Perception Service, the
Maneuver Coordination Service or the Automated Vehicle
Marshalling service.

REFERENCES

[1] ETSI, “Intelligent Transport Systems (ITS); Vehicular

Communications; Basic Set of Applications; Part 2: Specification of

Cooperative Awareness Basic Service”, EN 302 637-2, v1.3.2, 2014.

[2] ETSI, “Intelligent Transport Systems (ITS); Vehicular

Communications; Basic Set of Applications; Part 3: Specifications of

Decentralized Environmental Notification Basic Service”, EN

302 637-3, v1.2.2, 2014.

[3] ETSI, “Intelligent Transport System (ITS); Vehicular

Communications; Basic Set of Applications; Specification of the

Collective Perception Service”, TS 103 324 V2.1.1, 2023.

[4] ETSI, “Intelligent Transport Systems (ITS); Vehicular

Communications; Basic Set of Applications; Maneuver Coordination

Service”, TS 103 561, v0.0.8, 2024 (Draft).

[5] ETSI, “Intelligent Transport Systems (ITS); Automated Vehicle

Marshalling (AVM); Release 2”, TS 103 882, v2.1.1, May 2024.

[6] F. A. Schiegg, et al, "Automated Vehicle Marshalling: The first

Functionally Safe V2X Service for Connected Automated Driving",

IEEE Open Journal of Vehicular Technology, Early Access, Feb. 2025.

[7] ETSI, “Intelligent Transport Systems (ITS); Vulnerable Road Users

(VRU) awareness; Part 3: Specification of VRU awareness basic

service; Release 2”, TS 103 300-3, v2.1.1, Nov. 2020.

[8] M. Sepulcre et al.,, "LTE-V2X Scalability and Spectrum Requirements

to support Multiple V2X Services", Proc. IEEE 100th Vehicular

Technology Conference (VTC2024-Fall), Washington DC, USA, 7-10

Oct. 2023.

[9] A. Bazzi et al., “Multi-Channel Operation for the Release 2 of ETSI

Cooperative Intelligent Transport Systems," IEEE Communications

Standards Magazine, vol. 8, no. 1, pp. 28-35, March 2024.

[10] ETSI ITS, Intelligent Transport Systems (ITS); Architecture, Multi-

Channel Operation (MCO) for Cooperative ITS (C-ITS)”, ETSI TS 103

697 V2.1.1, Nov 2022.

[11] ETSI ITS, Intelligent Transport Systems (ITS); Facilities Layer;

Communication Congestion Control”, ETSI TS 103 141 V2.2.1, Nov

2022.

[12] E. Egea-Lopez and P. Pavon-Mariño, "Adjacent Channel Interference

and Congestion Control for Multi-Channel Operation in Vehicular

Networks," IEEE Transactions on Intelligent Transportation Systems,

Early Access, Jan. 2025.

[13] O. Váczi, L. Bokor, “Modeling and Evaluation of a Dynamic Channel

Selection Framework for Multi-Channel Operation in ITS-G5”, Telecom,

vol. 4(2), pp. 313-333, 2023.

[14] Source code for V2X Congestion Control for Multi-Channel Operation

over Vanetza C-ITS stack: https://github.com/msepulcre/mcoVanetza

[15] G. Thandavarayan, M. Sepulcre, J. Gozalvez and Baldomero Coll-

Perales, “Scalable Cooperative Perception for Connected and

Automated Driving”, Journal of Network and Computer Applications,

vol. 216, 103655, July 2023.

[16] ETSI, “Intelligent Transport Systems (ITS); Decentralized Congestion

Control Mechanisms for Intelligent Transport Systems operating in the 5

GHz range; Access layer part”, ETSI TS 102 687 V1.2.1, April 2018.

[17] ETSI, “Intelligent Transport Systems (ITS); Facilities Layer;

Communication Congestion Control”, ETSI TS 103 141 V2.1.1, Nov

2021.

[18] Vanetza ETSI C-ITS protocol stack. Online: https://www.vanetza.org/

[Last access: Feb. 2025]

[19] S. Lopez, M. Sepulcre, M. Fornell, D. Quiñones, J. Espinosa, J. Gozálvez,

P. Moga, "ETSI standard-compliant Collective Perception Service for

Connected Automated Driving", Proc. FISITA 2023 World Congress,

Barcelona (Spain), 12-15 September 2023.

https://github.com/msepulcre/mcoVanetza
https://www.vanetza.org/

