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Abstract—Connected and automated driving introduces a 

myriad of new V2X services, such as cooperative perception and 

maneuver coordination, that significantly increase the channel 

load and require multi-channel V2X operation. Policies for 

Multi-Channel Operation (MCO) and congestion control are 

therefore essential for simultaneously supporting multiple V2X 

services across several channels. In this context, this paper 

presents the design, implementation, and extensive validation of 

a Facilities layer V2X congestion control solution for multi-

channel operation integrated into an ETSI-compliant 

Cooperative Intelligent Transportation Systems (C-ITS) 

protocol stack. Our approach dynamically adapts transmission 

parameters based on real-time channel conditions and the 

priorities and requirements of the V2X services operating in a 

C-ITS station. By employing a Traffic-Class based proportional 

fairness strategy, the solution allocates available communication 

resources among multiple V2X services, effectively responding 

to varying channel loads in real time. Scalable experimental 

results in a virtualized environment demonstrate that our 

solution meets ETSI Release 2 requirements while bridging the 

gap between simulation-based evaluations and real-world 

testing, accounting for hardware limitations and processing 

delays. This work lays a robust foundation for scalable and 

congestion-aware C-ITS testing and validation prior to real 

world deployments. This paper makes our code publicly 

available so that other researchers can replicate our study and 

further explore MCO solutions for V2X communications. 
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I. INTRODUCTION  

Vehicle-to-Everything (V2X) communications play a 
crucial role in enhancing road safety, traffic efficiency, and 
automated driving by enabling real-time information 
exchange among vehicles, infrastructure, and other road users. 
The ETSI Technical Committee on Intelligent Transport 
Systems (ITS) is responsible for developing standards for 
V2X communications, ensuring interoperability and 
addressing emerging vehicular communication needs. The 
initial set of standards, known as Release 1, was designed to 
support fundamental “Day-1” applications, which primarily 
relied on the exchange of Cooperative Awareness Messages 
(CAMs) [1] and Decentralized Environmental Notification 
Messages (DENMs) [2]. CAMs are continuously broadcast by 
vehicles and roadside units to provide real-time information 

about their status (e.g. position and speed in the case of 
vehicles). DENMs are event-driven messages intended to 
warn road users of safety-critical incidents. A single 10-MHz 
radio channel was deemed sufficient for “Day-1” applications, 
and Release 1 standards did not include mechanisms for multi-
channel operation. To avoid overloading the channel, a 
framework for congestion control (DCC, Decentralized 
Congestion Control) was specified for ITS-G5. For C-V2X, 
the congestion control approach defined by 3GPP at the MAC 
was adopted in ETSI specifications. 

The evolution of vehicular applications beyond "Day-1" 
functionalities has required a more advanced communication 
framework. ETSI Release 2 introduces a broader set of use 
cases, enabling vehicles to share collective perception 
messages [3] and maneuver coordination messages [4], 
allowing road-infrastructure nodes to perform automated 
vehicle marshaling for parking or factories [5][6], and 
enabling vulnerable road users (VRUs), such as cyclists and 
scooter riders, broadcast their presence [7]. These new V2X 
services significantly increase the volume and complexity of 
exchanged messages, requiring more than one 10-MHz radio 
channel [8]. To address this growing demand, ETSI Release 2 
has defined a framework for multi-channel operation (MCO) 
through a set of specifications dedicated to managing the radio 
channels [9]. ETSI defines in [10] the communication 
architecture for MCO, specifying how different MCO entities 
within a C-ITS station gather information and dynamically 
make decisions about channel usage to ensure efficient and 
coordinated spectrum utilization. A key element of the MCO 
architecture is the new facilities-layer entity (a.k.a. 
MCO_FAC) [11], which is responsible for controlling and 
distributing the load among the available channels. 
MCO_FAC collects information about active V2X services 
and their communication requirements, monitors available 
radio access technologies, and dynamically allocates 
resources to active V2X services to optimize spectrum 
utilization. 

The first studies on the ETSI MCO concept have been 
based on simulations, focusing on evaluating different 
mechanisms for distributing the load across the available 
channels [12][13]. In this paper, we present for the first time a 
real-world implementation of MCO_FAC on an ETSI-
compliant C-ITS protocol stack, Vanetza, and its real-time 
evaluation under large-scale scenarios using virtualized 
environments. Our goal is to demonstrate the feasibility and 
potential of MCO_FAC when integrated into a C-ITS stack 
with multiple V2X services. Unlike simulation studies, the 
evaluation of our implementation accounts for potential 
hardware limitations and processing delays. Our work thus 
demonstrates a clear transition from simulation-based 
evaluations to real-world deployment, and provides valuable 
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insights into the dynamic resource allocation necessary to 
support the increasing complexity and communication 
requirements of V2X services. This real-time evaluation not 
only validates the theoretical benefits of MCO but also paves 
the way for more robust and scalable vehicular 
communication systems, ultimately contributing to safer and 
more efficient transportation networks. 

With this paper we make our code open source [14], 
including extensions to Vanetza that implement MCO_FAC 
and integrate it seamlessly into the existing C-ITS protocol 
stack. In addition, we provide a complete multi-V2X service 
testing environment with all the necessary scripts and code to 
virtualize and run multiple concurrent instances of the C-ITS 
protocol stack. The provided source code allows other 
researchers to easily replicate our study and further explore 
MCO solutions for V2X communications. 

II. MCO AT FACILITIES LAYER 

The MCO architecture [10] supports multiple applications 
and services, as well as multiple radio interfaces and channels. 
The MCO architecture comprises three core components [9]: 
MCO_FAC (Facilities layer), MCO_NET (Network layer), 
and MCO_ACC (Access layer). MCO_FAC serves as the core 
decision-making component, where all the intelligence of the 
MCO operations reside, ensuring that channel selection 
strategies are dynamically adapted to meet the requirements 
of the different V2X services within C-ITS station. Its central 
role emerges from the need to consider both application 
requirements and access layer conditions, thereby facilitating 
efficient and coordinated use of multiple communication 
channels. ETSI defines in [11] the specific functionalities 
required to support MCO at the Facilities layer, ensuring 
seamless integration with V2X services as well as lower-layer 
networking and access technologies. For this purpose, the 
MCO_FAC contains the following three key entities: 

Bandwidth Management Entity (BME). This entity 
computes and distributes the available communication 
resources among the V2X services of the C-ITS station. For 
this purpose, it monitors the load on each channel (via the 
corresponding radio interface) and computes the 
communication resources that the C-ITS can use. It then 
allocates the computed resources among the V2X services 
while taking into account their requirements. The resources 
can be internally computed as a proportion of the bandwidth 
or channel, but must be translated to a metric that is 
understandable by the V2X services, such as bits per second, 
so that they adapt their message rate and size as needed. The 
V2X services have the flexibility to adjust their message rate 
while keeping the message size constant (e.g., modifying the 
CAM generation without changing its size). They could also 
choose to modify the message size while maintaining the 
message rate (e.g., varying the number of detected objects 
included in each CPM), or they could opt to adjust both 
parameters (e.g., reducing the message size by omitting 
optional elements while also altering the message rate). 

Message Handling Entity (MHE). This entity manages 
the transmission of messages to the Networking & Transport 
layer, ensuring that each message is assigned appropriate 
parameters (e.g., priority, transmission channel) based on the 
available communication resources. The MHE also collects 
statistics on the messages generated by the various V2X 
services to ensure that they comply with the limits indicated 
by the BME in terms of resources. These limits can be 

enforced individually for each service, or by aggregating the 
messages from all services. 

Message Collecting Entity (MCE). This entity handles 
the reception of messages from lower layers and directs them 
to the appropriate V2X service. It can also collect statistics to 
enable advanced functionalities. 

Although the MCO framework specifies the functional 
structure of MCO_FAC, the implementation of specific 
algorithms is left to manufacturers. This is particularly true, 
and relevant, for the algorithms used to compute the 
communication resources available to the C-ITS station in a 
channel based on its channel load, and to distribute those 
resources among the multiple active V2X services. 

III. SYSTEM DESIGN AND IMPLEMENTATION 

A. C-ITS protocol stack 

For the prototyping of MCO_FAC, we have leveraged 
Vanetza [18], an open-source C-ITS protocol stack designed 
for vehicular networking research and development. Vanetza 
provides an implementation of the ETSI C-ITS protocol stack, 
enabling direct vehicle-to-vehicle and vehicle-to-
infrastructure communication. It includes key functionalities 
such as GeoNetworking, the Basic Transport Protocol (BTP), 
and support for CAMs and DENMs in ASN1. Vanetza has 
been shown to successfully run on devices from Cohda 
Wireless (MK5), Autotalks (Craton and Secton), and nfiniity 
(CUBE EVK). We have also demonstrated in a previous study 
that Vanetza can run on an automotive grade Telematic 
Control Unit from Idneo (VMax) which is equipped with a C-
V2X Mode 4 radio interface [19]. 

The MCO_FAC module implemented has been integrated 
into the Vanetza C-ITS protocol stack with minimal 
modifications. This development is based on Socktapp, a tool 
provided within Vanetza, which we have extended to support 
MCO functionalities at the Facilities layer. The implemented 
MCO_FAC is instantiated conditionally (via the use-mco flag) 
and can therefore be activated or deactivated at startup by the 
user. The modifications performed in main.cpp, BTP, and the 
corresponding facilities-layer services are minimal, ensuring 
that the MCO_FAC implementation does not disrupt existing 
functionalities and can be easily integrated into new V2X 
services.  

The integration of the MCO_FAC module in the C-ITS 
architecture is illustrated in Fig. 1. As shown in the figure, the 
MCO_FAC module acts as an interface between different 
V2X services and the transport layer (i.e., BTP). The dashed 
line represents the control interface that handles the signal 
exchange for the proper interaction of the MCO_FAC with the 
V2X services, while the solid lines represent the data 
interfaces responsible for the exchange of data messages 
between different layers.  

 
Fig. 1. Integration of MCO_FAC in the C-ITS protocol stack. 



B. Facilities layer MCO  

Fig. 2 illustrates the internal architecture and message flow 
of the implemented MCO_FAC module. The core component, 
which is part of the BME, performs resource management and 
is triggered periodically by a timer set to TRM = 200ms. This 
component first computes the resources available to the C-ITS 
station based on the channel load, and then distributes these 
computed resources among the V2X services. To achieve this, 
we have implemented the Adaptive approach of DCC 
(Decentralized Congestion Control) [16] at the Facilities 
layer. This approach calculates the amount of resources that 
the C-ITS station can use, referred to as delta (δ), a unitless 
value representing the maximum percentage of time (or 
bandwidth) the station is allowed to transmit on the channel. δ 
is updated in each iteration using a control equation that 
depends on the target and the measured channel load: 

𝛿 = (1 − 𝛼) · 𝛿 + 𝛿𝑜𝑓𝑓𝑠𝑒𝑡 (1) 
where 

𝛿𝑜𝑓𝑓𝑠𝑒𝑡 = {
min(β · (𝐶𝐵𝑅𝑡𝑎𝑟 − 𝐶𝐵𝑅), 𝐺𝑚𝑎𝑥

+ ) 𝑖𝑓 𝐶𝐵𝑅𝑡𝑎𝑟 > 𝐶𝐵𝑅

max (β · (𝐶𝐵𝑅𝑡𝑎𝑟 − 𝐶𝐵𝑅), 𝐺𝑚𝑎𝑥
− ) 𝑖𝑓 𝐶𝐵𝑅𝑡𝑎𝑟 ≤ 𝐶𝐵𝑅

 (2) 

α, β, 𝐺𝑚𝑎𝑥
+  and 𝐺𝑚𝑎𝑥

−  are constant control parameters [16]. The 

channel load is measured every TRM using the CBR (Channel 
Busy Ratio) metric, which represents the proportion of time 
the channel is sensed as busy. The target channel load, CBRtar, 
was configured to 0.68, following [16]. 

Once δ is computed, the resource management component 
adopts a Traffic-Class based proportional fairness approach to 
distribute the resources among the V2X services of the C-ITS 
station. This approach is inspired from [17] but the design of 
alternative approaches is an open research challenge, and 
actually the objective of the Special Task Force STF688 on 
Resource management that has been recently established 
within ETSI. Following this approach, the highest-priority 
services (i.e., those in the lowest Traffic Class) receive 
resources in proportion to their requirements. If any resources 
remain, they are then allocated to the second-highest Traffic 
Class, with any subsequent surplus distributed to the third and 
fourth Traffic Classes until all resources are assigned. To 
prevent any V2X service from being starved, we have 
implemented a policy ensuring that each service is allocated 
at least the resources required to transmit one packet every 2 
seconds. To estimate the resources required by each V2X 
service, the MHE of MCO_FAC collects statistics on all 
generated messages. The data collected is then used to 
compute the average message size and transmission interval 
for each service over the last second, thereby determining the 
average required resources for each V2X service. Some of the 
key parameters of our implemented MCO_FAC are 
summarized in Table 1. 

 
Fig. 2. Internal architecture and flow of the implemented MCO_FAC. 

Table 1. MCO_FAC parameters 

Parameter Value 

Target channel load (CBRtar) 0.68 

Traffic Classes 0–3 

Maximum transmission interval  2 s 

Resource management interval (TRM ) 200 ms 

Averaging time window 1 second 

 

IV. VIRTUALIZED TESTING ENVIRONMENT   

The congestion control module at facilities layer 
(MCO_FAC) has been tested and validated in a virtualized 
testing environment. The module is implemented in a 
complete and fully standard-compliant C-ITS protocol stack. 
To run concurrent instances of the C-ITS stack on a single 
computer, a Docker container image was created that includes 
everything needed to run the stack. Each stack instance was 
deployed as a separate container at runtime with the Docker 
Engine. All containers were connected via the Docker 
network, a virtual network that allows containers to 
communicate with each other and with the outside world. 

The MCO_FAC module was evaluated under low, 
medium, and high channel load scenarios by concurrently 
running five, ten, and fifteen virtualized C-ITS stacks, 
respectively. We have tested the implementation with up to 
fifteen stacks concurrently running on the same hardware due 
to the computational workload generated by the concurrent 
stacks and the processing power of our computing platform1. 
Our implementation can concurrently run more C-ITS stacks 
with more powerful computing platforms.  

Each stack represents a C-ITS station (i.e. vehicle) and has 
five active V2X services that periodically generate V2X 
messages with constant size (105 bytes including headers). As 
shown in Table 2, each service is configured with a default 
minimum interval of 100 ms (i.e. a maximum message rate of 
10 Hz). The considered V2X services will maintain their 
message size and reduce their message generation rate 
following the instructions of MCO_FAC to control 
congestion. The excess rate would be offloaded to an 
alternative channel. To validate the effect of message 
priorities, different Traffic Classes were configured for each 
V2X service (see Table 2).  

Table 2. V2X message priorities 

V2X service ID Traffic Class 

1 0 

2 1 

3 2 

4 2 

5 3 

 

Since the communication among the virtualized C-ITS 
stacks happens through a virtualized network, the CBR 
measurements had to be estimated at the higher layers. For this 
purpose, the MCO_FAC collects information about all 
received V2X messages through the MCE. The CBR is 
estimated by summing the sizes of all the received V2X 

1 The implemented MCO_FAC has been tested on Ubuntu 22.04.3 LTS 

(64-bit) running on an Asus TUF Gaming FX505DT laptop, equipped with 

an AMD Ryzen 7 3750H processor operating at 2.3 GHz, 16 GB of RAM, 

and an NVIDIA GeForce GTX 1650 GPU with 4 GB. 



messages every TRM and dividing the result by TRM and a 
predefined data rate of 6 Mbps. A scaling factor, sf, was used 
to emulate high channel loads without the need to run more 
than one hundred stacks in parallel to congest the channel. The 
environment considered limited the maximum number of 
simultaneous stacks that run in real time to fifteen. The scaling 
factor was configured as sf=9 to generate channel loads of 
approximately 31%, 63%, and 94% for the corresponding low, 
medium, and high channel load scenarios.  

The duration of each test was configured to be 300 seconds 
(i.e. 5 minutes), with the first 50 seconds considered as an 
initial transition period and not considered for evaluation. This 
initial period is required for the simultaneous activation of all 
the stacks at startup in the same hardware, which will not 
happen in a real implementation. The length of this period 
depends on both the algorithm and the time required to 
initialize all the Docker containers on the same hardware.  

V. RESULTS  

To evaluate the implemented MCO_FAC module, we first 
analyze its convergence. To this end, Fig. 3 plots the time 
evolution of delta (δ), which is the percentage of radio 
resources that can be used by the C-ITS station. The value of 
δ , computed from the measured CBR, is used by MCO_FAC 
to distribute the resources among the V2X services. Since the 
message size is constant, δ is employed to adapt the message 
generation interval of the V2X services. The results clearly 
indicate that the system becomes stable after the initial 
transition period. As expected, δ is inversely proportional to 
the channel load, decreasing as the channel load increases. In 
the low channel load scenario, we observed that δ converges 
to approximately 2.74%. For the medium channel load 
scenario, δ stabilizes at around 0.66%, and for the high 
channel load scenario, δ converges to around 0.45%.  

The convergence and stability of δ is associated to the 
convergence and stability of the CBR, which is illustrated in 
Fig. 4. As observed, MCO_FAC does not apply any 
congestion control measures in the low channel load scenario 
because the load remains significantly below the target level. 
In the medium channel load scenario, MCO_FAC begins to 
implement slight congestion control measures as the load 
approaches the target. Finally, in the high channel load 
scenario, MCO_FAC effectively controls the channel load and 
reduces the CBR from 94% (if all services were generating 
messages at 10 Hz) to approximately 62%. 

It is important to highlight that the stability and 
convergence of δ and the CBR were achieved while running 
the solution concurrently in Docker containers in real time. 
Hardware limitations introduced processing delays that affect 
the actual transmission intervals. This occurs because a timer 
is dynamically configured at runtime based on the message 
interval computed by MCO_FAC for each V2X service. 
When the timer expires, a new message is generated and 
transmitted, the processing delays prevent the actual 
transmission intervals from exactly matching those configured 
by MCO_FAC. Fig. 5 illustrates the time evolution of the 
configured and actual transmission intervals for one V2X 
service in the low channel load scenario. Fig. 5a shows that 
the configured interval is 100 ms, given the low CBR, while 
Fig. 5b shows that the actual transmission interval slightly 
fluctuates around 100 ms. These deviations are mainly due to 
real-time processing delays (e.g., computing overhead, 
hardware limitations, etc.) and do not impact the overall 

stability and convergence of the implemented MCO_FAC, 
thereby demonstrating its robustness. Moreover, these 
deviations capture realistic processing and timing 
characteristics often omitted in V2X simulations, 
underscoring the importance of this study for analyzing real-
world implementations where precise timing and 
responsiveness are critical. 

 

Fig. 3. Time evolution of delta (δ) for different channel load scenarios. 

 

Fig. 4. Time evolution of CBR (Channel Busy Ratio) for different channel 

load scenarios. 

  

(a) Configured transmission interval (b) Actual transmission interval 

Fig. 5. Configured and actual message transmission interval of one V2X 

service in the low channel load scenario.  

Fig. 6 shows the actual transmission intervals of all the 
V2X services as a function of time for the different channel 
load scenarios. Fig. 6a shows that the configured interval 
remains constant and is close to the default value of 100 ms in 
the low channel load scenario, primarily due to the low CBR 
(see Fig. 4). In contrast, for the medium and high channel load 
scenarios, the MCO_FAC limits the message rate of the V2X 
service with the lowest priority to control the channel load. 
Fig. 6b shows that the transmission interval of V2X service 5 
increases to approximately 145 ms because there is 
insufficient bandwidth to accommodate all its transmissions. 
Conversely, in the high channel load scenario, MCO_FAC 
allocates all available resources to V2X services 1 to 4, as 



shown in Fig. 6c. To prevent starvation of V2X service 5, 
MCO_FAC still permits the transmission of one message 
every 2 seconds, following the implemented starvation policy. 

 
(a) Low channel load scenario  

 
(b) Medium channel load scenario  

 
(c) High channel load scenario  

Fig. 6. Actual transmission interval of V2X messages for different channel 

load scenarios. 

VI. CONCLUSIONS 

This paper has demonstrated the first successful design, 
integration, and scalable validation of a Facilities layer 
congestion control solution for multi-channel operation within 
an standards-compliant C-ITS protocol stack that is provided 
open-source to the community in [14]. The validation has been 
conducted in a virtualized experimental environment that 
allows testing the operation of congestion control protocols in 
scalable testing environments and real-world C-ITS stacks 
prior to on-field deployments. Our experimental evaluation 
confirms that the proposed solution dynamically adapts 
transmission parameters in response to real-time channel 
conditions and service priorities and requirements, effectively 
managing channel load even under hardware limitations and 
processing delays. The solution provides a practical 
framework that advances simulation-based evaluations 
toward real-world deployment. These findings establish a 

robust foundation for testing and validating scalable, 
congestion-aware C-ITS implementations. Future work will 
focus on designing and evaluating different algorithms for the 
resource management and message handling of MCO_FAC, 
integrating additional multi-channel operation components 
such as MCO_NET and MCO_ACC, and supporting ETSI 
V2X services such as the Collective Perception Service, the 
Maneuver Coordination Service or the Automated Vehicle 
Marshalling service. 
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